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Microwave Characteristics of a Pseudomorphic High
Electron Mobility Transistor under Electro-Optical
Stimulations
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Abstract—Comprehensive Pop¢-, Vgs-, and Vpg-dependent
variations of microwave performances {fr and foax) in a
PHEMT under electro-optical stimulation are reported for
the first time. Under low P,g:, microwave characteristics are
observed to be predominantly modulated by the photoconductive
effect through the transconductance. Under high optical power,
however, they are limited by the photovoltaic effect through the
gate capacitance and a parasitic MESFET activated parallel
to the Ing.13Gag.s7As channel PHEMT. Contrary to the dc
current-voltage (I-V) characteristics, which are predominantly
controlled by the photoconductive effect with a strong nonlinearity
due to a parallel conduction, microwave characteristics strongly
depend on the photovoltaic effect as well as the photoconductive
effect under electro-optical stimulation. An extended small-signal
photonic-microwave model is suggested for better description of
PHEMT’s under electro-optical stimulations.
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. INTRODUCTION

ONSIDERING microwave-photonics as a promising
vehicle for high-speed and high-capacity communicatio
systems, a pseudomorphic high electron mobility transistor - _
PHEMT) is one of the most competing devices for hi ig. 1. Transconductance characteristics of a PHEMT (a V-shaped gate with
( ) ] p ) g g g=1pm Ly = Ly, =1pm,andV = 2 x 100 pm as in the inset) under
performance photonic-microwave circuits and systems ddlectro-optical stimulationsi,.. = 0, 3, 6, and9 mw).
to its superior electro-optical performances [1]-[8]. We also

expect that variations of photonic-dc/microwave characteristinetero-interface epitaxial structures. The current gain cut-off
in PHEMT’s under electro-optical co-stimulation can be usefdequency (fr) and the maximum frequency of oscillation
as an extended nondestructive characterization techniqyg..vac)) have been characterized for various electrical
for physical mechanisms in the failure and degradation operating conditions and optical powers ov&g,, = 0 ~ 30
heterostructure field effect transistors [9]. mW with A = 0.83 xm. Physical mechanisms involved in the
In this work, photonic-microwave characteristics of awariation of photonic microwave characteristics are analytically
n-channel A} 3Ga 7As/GaAs/In.13Ga s7As PHEMT are re- explained and an extended photonic-microwave equivalent

ported for possible applications both as a photonic-microwaggcuit model is suggested for better description of microwave

responsive device and as a novel method for the characterigarformances of PHEMT's under electro-optical stimulation.
tion of traps-related mechanisms in PHEMT’s with multiple

Il. MICROWAVE CHARACTERISTICS OF APHEMT UNDER
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TABLE | R 1L .
HIGHEST VALUES OF CURRENT GAIN Gate g ngp Rd Drain
CUT-OFF FREQUENCY ( fr|max ), MAXIMUM FREQUENCIES OFOSCILLATION {| .
(fmax(MAC) max AND fmax(t7)|max) UNDER ELECTRO-OPTICAL od
STIMULATIONS (P, = 0, 3, 20, AND 30 mW) wiTH BIAS CONDITIONS 7y
(Vas andVpg). R " + _ﬂ_
¥ ;" T Ves ® /(5 7 Cu

P opt fT’mxx( VGS: VDS) ﬁuax(MAG)imax(VGs; VDS) f;nax(L’)Im:x( VGs; VDS) gsp C gs gmvgs g mp

OmW 6.62GHz (0.0,2.4V) | 16.89GHz (0.0,2.4V) | 3.32GHz (-0.7,2.4V) rdS'P

3mW 9.31GHz (0.0,1.4V) | 31.45GHz (0.0,2.4V) | 4.40GHz (-0.7,1.4V)
20mW | 10.95GHz (0.0,1.4V) | 41.79GHz (0.0,2.4V) | 4.88GHz (-0.7,1.4V) RS
30mW | 11.02GHz (-0.1,1.4V) | 57.15GHz (0.0,2.4V) | 4.86GHz (-0.7,1.4V) Source

Fig. 2. Extended photonic-microwave equivalent circuit including optically
predominantly due to a parallel conduction under high opticabuced transconductancg...,), gate capacitancely; ,, Cga,p), OUtPUL

: ; ; ot esistance enhancement,,,, and gate leakage as a parallel resigtBr;)
stlmu_lat|on [11]. Microwave characterls_tlcs are measured a%r%er electro-optical stimulations.
function of the gate voltag€/gs), the drain voltagéVps), and
the optical powel Pop). Pope-dependentfy and fiaxvac)

have been investigated from scattering parameters measure&\igae/relthe gatle ctapacrigr(ﬁﬁ t': VthL_s;rfP/ deﬂ‘)/andg,agepend
an HP-8510B vector network analyzer. strangly on electro-optical stimulation&,, Vas andVps) as

Under electro-optical stimulations, photonic-microwav&’el_l as the epitaxial structure of the PHEMT under characteri-

characteristics are measured and bias-dependent maximzl?r%ﬂon'

. . : he maximum frequency of oscillatiofif,,,..xnaq)) can
values of fr and fmax(vac) are obtained as summarized in : max(MAG)
M Wi?hout Opticg\lhix"ca)minatior(Popt — 0), maximum also be described by (2), shown at the bottom of the page

values of fr and fuaxvac) Were measured to be 6.6213], wheregys, Cye(Cya), R, and Ry (R;) mean the output

GHz and 16.89 GHz, respectively. As expected, they depeﬁgﬁnductance, the gate-source(-drain) capacitance, intrinsic

strongly on both/s andVps, primarily due to the modulation rC ann(?[:v rlesitanc)((a, atn(l parasitic dgategsdourct?)nrtla3|str?nce,
of transconductance, parasitic capacitances, and parasficoccrvey. AS EXpecte himax(vac) depends strongly o
asitic resistances and capacitances as wel},aga fr and

resistances under electro-optical stimulation. Highest valuessp?fr

. epends strongly o, ;.
Jr and fraxvac) under P, = 30 mW were improved to o L -
fr = 11.02 GHZ andfyaxaiacy = 57.15 GHz, respectively. Considering variations of characteristic parameters under op-

Compared with relatively small change frofy = 6.62 tical stimulation, an extended photonic-microwave equivalent

to 11.02 GHz, we observed a significant improvement i?;]ircuit model is proposed in Fig. 2. In addition to electrically
f (I\IIAG) frorr'1 16.89 to 57.15 GHz undef.., = 30 MW controlled characteristic model parametéys,, Cgs, Cad, 7'as)
max( ©M£ . " op - .

Highest values of bothfr and fiaxvac) Were observed agg dziiasmgégf'StZ?;ﬁfféfd’Rs)éwe gcludgdP 01’“;%
at large Vps and zero gate voltage, which has both a higPl /R f E tter d ng"(tf.” gsiff” hg“t’P’T“SJ’?
channel carrier density and a high channel electric field Wiﬁﬁ = 1/Ry) for better description of photonic-microwave

a small gate capacitance. We also observed sharp increas?h I:aracterlstlcs of PHEMT's. As experimentally described in

Jmax(Mac) While saturatedfr with increasing optical power € smaII-S|gnaI_ mode| parameters 6, = 2(.) mW in
for a specific electrical biabas and Vps. [5], gate capacitance§Cy,,Cza) and output resistanceqs
Under optical stimulation, predominant characteristic parancll—/T‘lS = gas = dly/dVys), as well as transconductance,
eters in the variation of both dc and microwave characterise co>c Withp _Wh'le parasitic reS|stance§ng., RS’Rd.) de-
tics of PHEMT's include the transconductance. which is mod/€aSe due to optically generated excess carriers. This extended
ulated mainly bythe photoconductive effedue :co increased photonic?microwave model agrees _weII With experimental
channel carrier concentration, and parasitic capacitances,wh? ervatlor_l n P.HEMTS under optlcal _st|mulat|on. Under
are controlled predominantly bihe photovoltaic effectat a eecFr(_)—optlcaI stimulation, the optically induced photocon-
specific electrical bias. Based on a conventional small-sigu?l'cmﬁty e_mdhth]ief phEtOVOItageV(gPt N ‘t/P(O mW)t_ Vp, h
model of PHEMT’s withR.4 as a total source-drain resistancé ” | .plnc o volage_) are dominan pa}rgme ers in the
(R = R, + Ry), the current gain cut-off frequency is de_modulatlon of photonic-microwave characteristics. The photo-
sc;i%ea byS[12] 4 conductive effect, due to optically stimulated excess channel
carriers above electrically induced channel carriers controlled
1 by Vas, appears predominantly on the parasitic resistances and

_ 9m
Ir= 210 (Cgs + Cga) - [1 + gasRea] + ginCeaRea (1) transconductandg,, = gmo + gmp) Which is saturated at high

fmax(l\'IAG) = (2)
R, +R, Cec 5 _ Chye
\/4gds (RCh + l'f;g—l:nRs) + % ) Cgs'iégd ) (1 T2 Cgs—iégd) ’ (1 + ngs)Q
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Fig. 3. Current gain cut-off frequenciegA's) of a PHEMT as a function of Fig. 4. Maximum oscillation frequencieg{..(mac's) of a PHEMT as a
Vps andVgs under electro-optical stimulation8y,,. = 0, 3,20,and30 mw).  function of Vs andVes under electro-optical stimulation®(,.. = 0, 3, 20,
and30 mw).

Fopi (>3 mW) as explicitly shown in Fig. 1F,,.-dependent parasitic Al 3Gay.-As MESFET, which is known aa parallel
transconductance can be modeled wgith, (transconductance conduction is also believed to play a deterministic role fip.

underF,,; = 0) and proportionality constants,(b, anda’) as Under P,,; < 3 mW, the In ;3Ga s7As channel layer is pre-
(3), shown at the bottom of the page, whekgniT, #MESFET:
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dominant over the optically induced parasitic MESFET [9]. As

and éngpmt Mean carrier mobility in the InGaAs channelg result, the total transconductance is governed by the conduc-

that in the AlGaAs layer, and saturated carrier density in th@n of In, ;3Ga s7As channel PHEMT. However, the parasitic
InGaAs channel, respectively [11F,: sar @nd énuemr,max  gate-to-source capacitancg. doesn't increase so much with
represent optical power and maximum excess carrier in tjpngpt < 20 mW. This agrees well with experimental observa-
InGaAs channel at the onset of parallel conduction. tion for fr — (Popi, Vas, Vbs) because the shape of tifig —
The photovoltaic effect, which is a result of the accommod@aopt’ Vas, Vbs) curves is similar tag,, — (Popi, Vas, Vbs)
tion of optical excitation with a depletion of majority carriers agurve. Contrary to the,,, — (Popt, Vas, Vbs), which was nearly
the heterojunction interface, appears mainly on the intrinsic aggturated oveP,
parasitic capacitances. Considering the optical absorption aftdases up td’,

excess carrier generation processes in PHER},-dependent

pt > 3 MW, fr — (Popt, Vas, Vps) curve in-
gate capacitance can be modeled as [10], [11]

opt = 20 mMW.
Under high optical stimulation wit#,,; > 3 mW, on the
other hand, we observed a saturatio.gfresulting in the sat-
uration of fr with P,y > 20 mW. This is partially due to
Cy=Cyo+ Cgp = Cuo(1 + &'\/1+ o/ Popyy) (4) theg,, in the saturation region caused by the parallel conduc-
tion via the parasitic MESFET with an increased optical power
with a P, -dependent gate capacitanCg,, a structure-depen- [10], [11]. Although the saturated transconductance does not
dent parametef’, and a structure/bias-dependent factofl2]. increase with an additional optical power, thg 1pGay s7As
Under low optical stimulation, as a result, the optically inducechannel layer (with a high transconductance) plays a dominant
gate capacitance linearly increases witl; in addition to the role. So, fr still increases with elevated optical power up to
electrically controlled capacitance und@y,, = 0.
P,pi-dependenifz is shown in Fig. 3 as a function @,

Vas, andVps. Under low optical powerfy — (Popt, Vas, Vbs)

P,y = 20 mW. However, the gate capacitan€g increases
curve looks very similar t@,,

with increasingF,,, due to a reduced depletion region with an
elevated photovoltage undgy,,;, > 20 mW, which agrees well
— (Popt» Vas. Vbg) curve. One

with previously reportedy,,, and fr characteristics [5]. For a
of main causes to the variation ¢ on . is an increased givenF,,;, maximum values of7 are obtained at a small nega-

transconductance (photoconductive effect) until the photo-itive Vs in the saturation mode, which has a saturated maximum
duced gate capacitance (photovoltaic effect) plays a dominan&in current over all optical inputs and a small gate capacitance
role in fr. Regarding the photoconductive effect on fhe the due to the pinched gate-drain capacitance.

G = { Imo + apEM T opt + buMESFET Lopt
moT

Popt S Popt,sat
/ .
Ymo + ¢ PHEMTONHEMT max + OUMESFET Fopt;

3
Popt > Popt,sat ( )
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Maximum frequencies of oscillation are shown in Fig. 4 aBIESFET parallel to the In;3Ga srAs channel PHEMT
a function of ¢, Vas, andVps. fuaxvac) increases signif- under high optical power. In the extended small-signal
icantly with increasing?,, especially at small negatiie;s  photonic-microwave model, optically induced characteristic
and largeVps. fmax(vmaa) increases almost linearly witR,,;  parameters were included for better description of PHEMT'’s
for givenVps andVes. The shape of .xvac) — Vbs curves  under electro-optical stimulation.
looks similar tog,,, — Vpg curves at near pinch-off condition
over all F,;,;. However, it is quite different from the shape of

gm — Vps curves at small negativs. fiaxmaq) increases REFERENCES
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