Top-Down Silicon Nanowire FETs for Biosensors

Jieun Lee, Jaeman Jang, Sung-Jin Choi, Dong Myong Kim, and Dae Hwan Kim^{a)} School of Electrical Engineering, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702, Korea ^{a)}E-mail: drlife@kookmin.ac.kr

Abstract

We silicon demonstrated nanowire (SiNW)complementary metal-oxide-semiconductor (CMOS) hybrid biosensors for voltage output on a 6" siliconon-insulator wafer using a wafer-level top-down process with a conventional back-end process. Firstly, SiNW-CMOS hybrid common-source amplifier biosensor shows the voltage-defined sensitivity can be individually controlled and maximized by the gate voltage of the metal-oxide-semiconductor field-effect transistor (MOSFET). Secondly, complementary SiNW biosensor exhibits an output voltage swing of 162 mV/pH which is 1.6 times larger than single SiNW sensor counterparts with a resistive load. Therefore, the proposed circuit and fabrication method is expected to be a promising solution for a very sensitive voltage readout scheme for the mass production of biosensors.

Keywords: Silicon nanowire FET, biosensors, topdown fabrication, voltage readout

1. Introduction

Recently, silicon nanowire field-effect transistor (SiNW FET) has attracted great attention as a new biosensor thanks to big advantages in terms of high sensitivity, and to a possibility for integrating with complementary metal-oxide-semiconductor (CMOS) circuits [1-2]. To successfully industrialize a topdown-processed SiNW FET-based biomolecule diagnosis system, in addition to high sensitivity, a noise-tolerant output with low-power consumption is also required. Furthermore, for robust signal processing with good noise tolerance, a voltage output is more advantageous than a current output from biosensors. Nevertheless, the approach for boosting the output voltage-defined sensitivity of top-down SiNWbased biosensors has rarely been demonstrated or discussed. In this work, we propose SiNW-CMOS

hybrid biosensors for voltage output and implement them on a 6" silicon-on-insulator wafer using a conventional CMOS process technology through a wafer-scale top-down process [3-4].

2. Experimental

The proposed SiNW-CMOS hybrid biosensors were fabricated on boron-doped 6" SOI wafers. The fabrication process is illustrated in Fig. 1(a). The crosssectional view of the SiNW-CMOS hybrid part is shown in Fig. 1(b). The proposed SiNW-CMOS hybrid common-source amplifier (CSA) biosensor and complementary SiNW biosensor are shown in Fig. 2(a) and (b), respectively.

3. Results and Discussion

Figure 3(a) shows the measured voltage transfer curves (VTC) of the SiNW-CMOS hybrid CSA for different pH levels. We verified the measured timevarying output voltage (V_{OUT}) with a change in the pH levels at a fixed V_{LG} , as shown in Fig. 3(b). Figure 4 shows that we can improve the voltage-defined sensitivity, which is defined as the shift of V_{OUT} with the varying pH, by controlling V_{GS} of individual metaloxide-semiconductor field-effect transistor (MOSFET) devices. The pH-dependent VTCs are shown in Fig. 5(a) as functions of V_{LG} . The transient voltage output $V_{OUT}(t)$ with time-varying pH values was also measured at a fixed V_{LG} of -1.65 V, as shown in Fig. 5(b). The proposed scheme is found to effectively overcome the ideal Nernstian limit so as to maximize the sensitivity beyond the highest limit attainable by a single SiNW device. The calculated $|\Delta V_{\text{OUT}}/V_{\text{DD}}|$ from the analytical model (by lines) is compared with the experimental results shown in Fig. 6. The proposed scheme promises to efficiently boost the sensitivity of a single SiNW sensor and make the voltage output immune to the individual sensitivity (in terms of $\Delta I/I$) of single SiNWs.

4. Conclusion

The top-down SiNW-CMOS hybrid biosensor was demonstrated with application to hydrogen ion sensors. The proposed fabrication process and circuit scheme are expected to potentially expedite the realization of low-cost highly sensitive battery-powered SiNW-CMOS hybrid diagnosis chips in the near future.

References

[1] Y. Cui et al., "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical Species," *Science*, vol. 293, p. 1289, 2001.

[2] E. Stern et al., "Label-free immunodetection with CMOScompatible semiconducting nanowires," *Nature*, vol. 445, p. 519, 2007.

[3] J. Lee et al., "SiNW-CMOS hybrid common-source amplifier as a voltage-readout hydrogen ion sensor," *IEEE Elect. Dev. Lett.*, vol. 34, p. 135, 2013.

[4] J. Lee et al., "Complementary silicon nanowire hydrogen ion sensor with high sensitivity and voltage output," *IEEE Elect. Dev. Lett.*, vol. 33, p. 1768, 2012.

Figure 1. (a) Fabrication flow of for the integration of SiNW biosensors with MOSFETs. (b) Crosssectional view of the SiNW-CMOS hybrid part [3].

Figure 2. Schematic diagrams of (a) SiNW-CMOS hybrid common-source amplifier (CSA) biosensor [3] and (b) complementary SiNW biosensor [4].

Figure 3. (a) VTC of the SiNW-CMOS hybrid CSA as a function of the pH level. The inset shows the normalized I_{DS} of the SiNW FET for varying pH values. (b) The measured time-varying V_{OUT} with a change in the pH level at a fixed V_{LG} [3].

Figure 4. (a) ΔV_{OUT} as a function of V_{GS} from the experimental data (Figs. 3(a) and (b)). R_{NW} is the effective resistance of the SiNW FET, and R_{MOS} is the effective resistance of the NMOSFET [3].

Figure 5. (a) VTC of complementary SiNW biosensors for different pH levels. The inset shows an error bar of $V_{\rm LT}$ for each pH level. (b) Transient $V_{\rm OUT}$ on changing the pH level for a fixed $V_{\rm LG}$ [4].

Figure 6. Calculated and measured $|\Delta V_{\text{OUT}}/V_{\text{DD}}|$ ($S_{\text{N}}/S_{\text{P}}$ are the sensitivity of n-/p-type SiNW biosensors). $S_{\text{N}} = 0.55 \times S_{\text{P}}$ and $S_{\text{N}} = 0$ corresponding to the proposed complementary SiNW biosensor and a single SiNW counterpart, respectively [4].