Electrical stress-induced instability of amorphous InGaZnO thin-film transistors under bipolar AC stress

Dongsik Kong, Sangwon Lee, Yong woo Jeon, Sungchul Kim, Yongsik Kim, Hyunkwang Jung, Minkyung Bae, Dong Myong Kim and Dae Hwan Kim^{a)}

School of Electrical Engineering, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul, 136-702, KOREA ^{a)}drlife@kookmin.ac.kr

Abstract

Bipolar AC stress-induced instability of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) is investigated in three TFT devices with the same W/L. The dominant mechanism of the AC stress-induced threshold voltage shift (ΔV_T) is observed to be due to the increase in the acceptor-like deep states of the density of states (DOS) in the a-IGZO active layer. Furthermore, it is reproducibly found that the variation of deep states in DOS makes a parallel shift in the I_{DS} - V_{GS} curve with an insignificant change in the subthreshold slope, as well as the deformation of the C_G - V_G curves.

1. Introduction

With advantages of a low cost room temperature (RT) fabrication process, a high mobility, and the compatibility with flexible transparent and electronic paper applications, amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) have been emerged as a promising solution for the next generation high performance backplanes in active-matrix liquid crystal displays (AMLCDs)/active-matrix organic light-emitting diodes (AMOLEDs) [1,2]. In order to make a-IGZO TFTs affordable for various innovative and practical applications, understanding the mechanism of reliability issues such as the bias induced threshold voltage shift (ΔV_T), the temperature-dependent instability, and the sensitivity to optical illumination is indispensable. In previous works [3], the electrical stress-induced instability and the consequent ΔV_T of a-IGZO TFTs under constant current stress has been reported to be mainly caused by the charge trapping mechanism, i.e., electron injection from channel into interface/dielectric traps, which has been verified by indirect evidence of a rigid positive ΔV_T without the change of subthreshold slope (SS) and/or a curve fitting for a stress time-evolution of ΔV_T with the logarithmic stretched-exponential time dependence [4, 5]. However, for a robust switching operation in practical display driver circuits, a bipolar AC stress would be actually employed and accumulated in a-IGZO TFTs Therefore, in this work, a bipolar AC stress time-evolution of ΔV_T in a-IGZO TFTs is investigated. Furthermore, the related mechanism is addressed with the direct evidence by using previously reported density of states (DOS) extraction method [6].

2. Device Structure and Fabrication

Devices are fabricated as follows: On a thermally grown SiO₂/Si substrate, the first sputtered deposition at RT and

patterning of molybdenum (Mo) gate are followed by plasma-enhanced chemical vapor deposition of SiO_2 (=100 nm) at 300 °C. An active layer (In_2O_3 : Ga_2O_3 :ZnO=2:2:1 at %) is then sputtered by RF magnetron sputtering at RT in a mixed Ar/O₂ (100:1 at sccm) and wet-etched with diluted HF to get a-IGZO active layer T_{IGZO} =70 nm. For the source/drain (S/D), a 200-nm-thick layer of Mo is sputtered at RT and then patterned by dry-etching. After N₂O plasma treatment on the channel surface of the a-IGZO active layer, a SiO_2 passivation layer is continuously deposited at 150 °C by PECVD without a vacuum break. The channel length (L) and the channel width (W) are designed to be 50 and 200 µm, respectively.

3. Experimental Results and Discussion

In order to confirm the reproducibility of the origin of a bipolar AC stress time-evolution of ΔV_T , three a-IGZO TFTs (device A, B, and C)with the same W/L=200/50 μm were characterized. Fig. 1 shows the electrical stress time-evolution of the drain current-gate-to-source voltage (I_{DS}-V_{GS}) characteristics. The conditions of electrical stress are as follows: $V_G = -15 \sim +15 \text{ V}$, $V_D=V_S=0$ V, f=100 kHz, rising/falling time $t_r=t_f=0.1$ µs, and duty ratio=50 % for AC stress. Despite of detailed difference of $I_{DS}\text{--}V_{GS}$ characteristics among three TFT devices, the overall positive ΔV_T during bipolar AC stress is reproducibly observed in all devices. In the case of device C (as seen in Fig. 1(c)), the V_T under AC stress slightly decreases after 6.3×10³ s, most probably due to the accumulated recovery process during the negative V_G stress phase. It is noteworthy that SS shows an insignificant change during the stress time. For more detailed analysis, the stress time-evolution of the gate capacitance-gate voltage (C_G-V_G) characteristics was measured as shown in Fig. 2. The signal of V_G is employed with f=10 kHz and the sweep rate=0.3 V/sec at a fixed $V_D=V_S=0$ V. The shape of the C_G-V_G curve becomes more deformed during AC stress. This is strongly reminescent of the defect or trap generation in the interface and/or active layer, whereas a positive shift of Von and VT with invariant SS is indicative of the charge trapping.

Fig. 3 shows the stress time-dependent DOS in the a-IGZO layer extracted by the optical charge pumping method reported in the previous work [6]. The increase of acceptor-like deep states during the AC stress is reproducibly observed. This result is reasonable because the increase of only acceptor-like deep states would lead to higher V_{on} in the I_{DS} - V_{GS} curve that is induced by slower moving-up of the Fermi-level E_F with increasing V_{GS} . Unchanged tail states are also consistent with the insignificant

change of SS which is independent of the stress time. Finally, Fig. 4 shows the stress time-dependence of ΔV_T fitted with a stretched exponential time dependence. While the stress time-dependent ΔV_T under a positive DC gate bias is well fitted with a stretched exponential function, in previous works [4, 5], that under AC stress is severely deviated from the stretched exponential function. Therefore, the dominant mechanism of the AC stress-induced ΔV_T is the increase of acceptor-like deep DOS rather than the electron trapping into the interface/gate dielectric.

4. Conclusion

The bipolar AC stress time-evolution of V_T is investigated in three a-IGZO TFTs with the same W/L. The AC stress-induced ΔV_T is reproducibly found to be due to the increase of the acceptor-like deep DOS rather than the electron trapping into the interface/gate dielectric.

Acknowledgements

This work was supported by the KOREA Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (No. 2009-0080344).

References

- [1] J. K. Jeong et al., SID Int. Symp. Digest Tech. Papers 39, 1 (2008).
- [2] J.-H. Lee et al., SID Int. Symp. Digest Tech. Papers 39, 625 (2008).
- [3] C. J. Kim et al., Tech. Dig. Int. Electron Devices Meet. 2006, 11.6.
- [4] A. Suresh et al, Appl. Phys. Lett. 92, 033502 (2008).
- [5] J. Lee et al, Appl. Phys. Lett. 93, 093504 (2008).
- [6] J. Park et al, IEEE Electron Device Lett. 29, 1292 (2008).

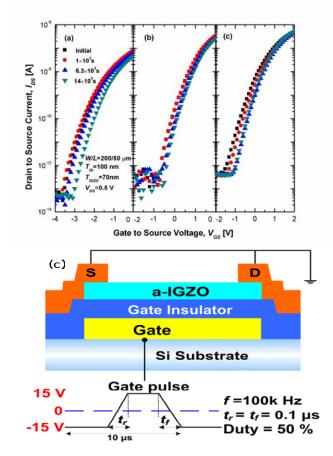


Figure 1. The electrical AC stress time-evolution of I_{DS} – V_{GS} characteristics of (a) device A, (b) device B, and (c) device C, respectively. (d) The condition of employed bipolar AC stress.

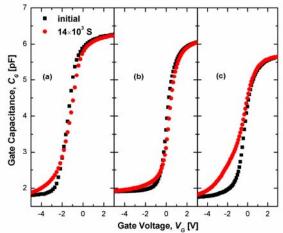


Figure 2. The electrical AC stress time-evolution of the C_G - V_G characteristics of (a) device A, (b) device B, and (c) device C, respectively.

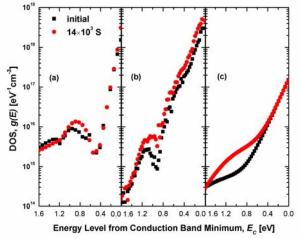


Figure 3. The electrical AC stress time-dependence of the *a*-IGZO DOS extracted by the optical charge pumping method as proposed in our previous work [6]. (a) Device A, (b) device B, and (c) device C, respectively.

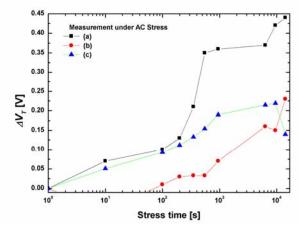


Figure 4. The electrical AC stress time-dependence of ΔV_T of (a) device A, (b) device B, and (c) device C, respectively. The AC stress does not follow the stretched exponential time dependence.